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Problem 4.46

Consider the three-dimensional harmonic oscillator, for which the potential is

V (r) =
1

2
mω2r2. (4.215)

(a) Show that separation of variables in cartesian coordinates turns this into three
one-dimensional oscillators, and exploit your knowledge of the latter to determine the
allowed energies. Answer :

En =

(
n+

3

2

)
ℏω. (4.216)

(b) Determine the degeneracy d(n) of En.

Solution

Schrödinger’s equation governs the time evolution of a wave function.

iℏ
∂Ψ

∂t
= − ℏ2

2m
∇2Ψ+ VΨ

Here the aim is to solve it in all of space with the potential energy function,

V (x, y, z) =
1

2
mω2(x2 + y2 + z2).

Since V = V (x, y, z), expand the Laplacian operator in Cartesian coordinates.

iℏ
∂Ψ

∂t
= − ℏ2

2m

(
∂2Ψ

∂x2
+

∂2Ψ

∂y2
+

∂2Ψ

∂z2

)
+ V (x, y, z)Ψ(x, y, z, t), −∞ < x, y, z < ∞, t > 0

Because Schrödinger’s equation and its associated boundary conditions (Ψ → 0 as |x| → ∞) are
linear and homogeneous, the method of separation of variables can be applied: Assume a product
solution of the form Ψ(x, y, z, t) = X(x)Y (y)Z(z)T (t) and plug it into the PDE.

iℏ
∂

∂t
[X(x)Y (y)Z(z)T (t)] = − ℏ2

2m

{
∂2

∂x2
[X(x)Y (y)Z(z)T (t)]

+
∂2

∂y2
[X(x)Y (y)Z(z)T (t)]

+
∂2

∂z2
[X(x)Y (y)Z(z)T (t)]

}
+

1

2
mω2(x2 + y2 + z2)[X(x)Y (y)Z(z)T (t)]

iℏX(x)Y (y)Z(z)T ′(t) = − ℏ2

2m

[
X ′′(x)Y (y)Z(z)T (t) +X(x)Y ′′(y)Z(z)T (t) +X(x)Y (y)Z ′′(z)T (t)

]
+

1

2
mω2(x2 + y2 + z2)[X(x)Y (y)Z(z)T (t)]
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Divide both sides by X(x)Y (y)Z(z)T (t) in order to separate variables.

iℏ
T ′(t)

T (t)
= − ℏ2

2m

[
X ′′(x)

X(x)
+

Y ′′(y)

Y (y)
+

Z ′′(z)

Z(z)

]
+

1

2
mω2(x2 + y2 + z2)

The only way a function of t can be equal to a function of x, y, and z is if both are equal to a
constant.

iℏ
T ′(t)

T (t)
= − ℏ2

2m

[
X ′′(x)

X(x)
+

Y ′′(y)

Y (y)
+

Z ′′(z)

Z(z)

]
+

1

2
mω2(x2 + y2 + z2) = E

Bring the terms with y and z to the right side.

− ℏ2

2m

X ′′(x)

X(x)
+

1

2
mω2x2 = E +

ℏ2

2m

[
Y ′′(y)

Y (y)
+

Z ′′(z)

Z(z)

]
− 1

2
mω2(y2 + z2)

The only way a function of x can be equal to a function of y and z is if both are equal to another
constant.

− ℏ2

2m

X ′′(x)

X(x)
+

1

2
mω2x2 = E +

ℏ2

2m

[
Y ′′(y)

Y (y)
+

Z ′′(z)

Z(z)

]
− 1

2
mω2(y2 + z2) = F

Bring the terms with y to one side.

− ℏ2

2m

Y ′′(y)

Y (y)
+

1

2
mω2y2 = E − F +

ℏ2

2m

Z ′′(z)

Z(z)
− 1

2
mω2z2

The only way a function of y can be equal to a function of z is if both are equal to another
constant.

− ℏ2

2m

Y ′′(y)

Y (y)
+

1

2
mω2y2 = E − F +

ℏ2

2m

Z ′′(z)

Z(z)
− 1

2
mω2z2 = G

As a result of using the method of separation of variables, Schrödinger’s equation has reduced to
four ODEs—one in x, one in y, one in z, and one in t.

iℏ
T ′(t)

T (t)
= E

− ℏ2

2m

X ′′(x)

X(x)
+

1

2
mω2x2 = F

− ℏ2

2m

Y ′′(y)

Y (y)
+

1

2
mω2y2 = G

E − F +
ℏ2

2m

Z ′′(z)

Z(z)
− 1

2
mω2z2 = G


The strategy is to solve the second and third eigenvalue problems for F and G, then to solve the
fourth eigenvalue problem for E, and then finally to solve the first eigenvalue problem for T (t).
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Since −∞ < x, y, z < ∞, the method of operator factorization can be used to solve the latter
three (as was done in Problem 2.10).

F =

(
j +

1

2

)
ℏω, j = 0, 1, 2, . . .

G =

(
k +

1

2

)
ℏω, k = 0, 1, 2, . . .

E − F −G =

(
l +

1

2

)
ℏω, l = 0, 1, 2, . . .

Substitute the formulas for F and G into the third equation.

E −
(
j +

1

2

)
ℏω −

(
k +

1

2

)
ℏω =

(
l +

1

2

)
ℏω

Solve for E.

Ejkl =

(
j + k + l +

3

2

)
ℏω,


j = 0, 1, 2, . . .

k = 0, 1, 2, . . .

l = 0, 1, 2, . . .

Evaluate the energy for many values of j, k, and l.

E000 =

(
0 + 0 + 0 +

3

2

)
ℏω =

(
3

2

)
ℏω = E0

E100 =

(
1 + 0 + 0 +

3

2

)
ℏω =

(
5

2

)
ℏω = E1

E010 =

(
0 + 1 + 0 +

3

2

)
ℏω =

(
5

2

)
ℏω

E001 =

(
0 + 0 + 1 +

3

2

)
ℏω =

(
5

2

)
ℏω

E110 =

(
1 + 1 + 0 +

3

2

)
ℏω =

(
7

2

)
ℏω = E2

E101 =

(
1 + 0 + 1 +

3

2

)
ℏω =

(
7

2

)
ℏω

E011 =

(
0 + 1 + 1 +

3

2

)
ℏω =

(
7

2

)
ℏω

E200 =

(
2 + 0 + 0 +

3

2

)
ℏω =

(
7

2

)
ℏω

E020 =

(
0 + 2 + 0 +

3

2

)
ℏω =

(
7

2

)
ℏω

E002 =

(
0 + 0 + 2 +

3

2

)
ℏω =

(
7

2

)
ℏω
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Evaluate the energy for more values of j, k, and l.

E111 =

(
1 + 1 + 1 +

3

2

)
ℏω =

(
9

2

)
ℏω = E3

E210 =

(
2 + 1 + 0 +

3

2

)
ℏω =

(
9

2

)
ℏω

E201 =

(
2 + 0 + 1 +

3

2

)
ℏω =

(
9

2

)
ℏω

E120 =

(
1 + 2 + 0 +

3

2

)
ℏω =

(
9

2

)
ℏω

E021 =

(
0 + 2 + 1 +

3

2

)
ℏω =

(
9

2

)
ℏω

E012 =

(
0 + 1 + 2 +

3

2

)
ℏω =

(
9

2

)
ℏω

E102 =

(
1 + 0 + 2 +

3

2

)
ℏω =

(
9

2

)
ℏω

E300 =

(
3 + 0 + 0 +

3

2

)
ℏω =

(
9

2

)
ℏω

E030 =

(
0 + 3 + 0 +

3

2

)
ℏω =

(
9

2

)
ℏω

E003 =

(
0 + 0 + 3 +

3

2

)
ℏω =

(
9

2

)
ℏω

Therefore, following the pattern,

En =

(
n+

3

2

)
ℏω, n = 0, 1, 2, . . . .

The degeneracy is the number of states that have the same energy. As a result, d0 = 1, d1 = 3,
d2 = 6, and d3 = 10. Notice that to get d1, 2 needs to be added to d0; to get d2, 3 needs to be
added to d1; and to get d3, 4 needs to be added to d2. The pattern is apparent for dn+1.

dn+1 = (n+ 2) + dn, d0 = 1

This is a recurrence relation, more specifically an inhomogeneous first-order linear difference
equation with constant coefficients. Bring dn to the left side.

dn+1 − dn = n+ 2

The left side is how the discrete derivative of a function dn of the integers is defined.

Ddn = n+ 2
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Take the discrete antiderivative of both sides by summing from 0 to n− 1.

n−1∑
q=0

Ddq =

n−1∑
q=0

(q + 2)

Dd0 +Dd1 +Dd2 + · · ·+Ddn−2 +Ddn−1 =
n−1∑
q=0

q +
n−1∑
q=0

2

(d1 − d0) + (d2 − d1) + · · ·+ (dn−1 − dn−2) + (dn − dn−1) = 0 +
n−1∑
q=1

q + 2
n−1∑
q=0

1

dn − d0 =
(n− 1)[(n− 1) + 1]

2
+ 2[(n− 1) + 1]

dn − 1 =
(n− 1)n

2
+ 2n

dn − 1 =
n2 + 3n

2

dn =
n2 + 3n+ 2

2

Therefore, the degeneracy of energy En is

dn =
(n+ 2)(n+ 1)

2
.
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