Problem 4.46

Consider the three-dimensional harmonic oscillator, for which the potential is

$$
\begin{equation*}
V(r)=\frac{1}{2} m \omega^{2} r^{2} . \tag{4.215}
\end{equation*}
$$

(a) Show that separation of variables in cartesian coordinates turns this into three one-dimensional oscillators, and exploit your knowledge of the latter to determine the allowed energies. Answer:

$$
\begin{equation*}
E_{n}=\left(n+\frac{3}{2}\right) \hbar \omega \tag{4.216}
\end{equation*}
$$

(b) Determine the degeneracy $d(n)$ of E_{n}.

Solution

Schrödinger's equation governs the time evolution of a wave function.

$$
i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+V \Psi
$$

Here the aim is to solve it in all of space with the potential energy function,

$$
V(x, y, z)=\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}+z^{2}\right) .
$$

Since $V=V(x, y, z)$, expand the Laplacian operator in Cartesian coordinates.

$$
i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial^{2} \Psi}{\partial y^{2}}+\frac{\partial^{2} \Psi}{\partial z^{2}}\right)+V(x, y, z) \Psi(x, y, z, t), \quad-\infty<x, y, z<\infty, t>0
$$

Because Schrödinger's equation and its associated boundary conditions ($\Psi \rightarrow 0$ as $|\mathbf{x}| \rightarrow \infty$) are linear and homogeneous, the method of separation of variables can be applied: Assume a product solution of the form $\Psi(x, y, z, t)=X(x) Y(y) Z(z) T(t)$ and plug it into the PDE.

$$
\begin{aligned}
& i \hbar \frac{\partial}{\partial t}[X(x) Y(y) Z(z) T(t)]=-\frac{\hbar^{2}}{2 m}\left\{\frac{\partial^{2}}{\partial x^{2}}[X(x) Y(y) Z(z) T(t)]\right. \\
& +\frac{\partial^{2}}{\partial y^{2}}[X(x) Y(y) Z(z) T(t)] \\
& \left.+\frac{\partial^{2}}{\partial z^{2}}[X(x) Y(y) Z(z) T(t)]\right\} \\
& +\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}+z^{2}\right)[X(x) Y(y) Z(z) T(t)] \\
& i \hbar X(x) Y(y) Z(z) T^{\prime}(t)=-\frac{\hbar^{2}}{2 m}\left[X^{\prime \prime}(x) Y(y) Z(z) T(t)+X(x) Y^{\prime \prime}(y) Z(z) T(t)+X(x) Y(y) Z^{\prime \prime}(z) T(t)\right] \\
& +\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}+z^{2}\right)[X(x) Y(y) Z(z) T(t)]
\end{aligned}
$$

Divide both sides by $X(x) Y(y) Z(z) T(t)$ in order to separate variables.

$$
i \hbar \frac{T^{\prime}(t)}{T(t)}=-\frac{\hbar^{2}}{2 m}\left[\frac{X^{\prime \prime}(x)}{X(x)}+\frac{Y^{\prime \prime}(y)}{Y(y)}+\frac{Z^{\prime \prime}(z)}{Z(z)}\right]+\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}+z^{2}\right)
$$

The only way a function of t can be equal to a function of x, y, and z is if both are equal to a constant.

$$
i \hbar \frac{T^{\prime}(t)}{T(t)}=-\frac{\hbar^{2}}{2 m}\left[\frac{X^{\prime \prime}(x)}{X(x)}+\frac{Y^{\prime \prime}(y)}{Y(y)}+\frac{Z^{\prime \prime}(z)}{Z(z)}\right]+\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}+z^{2}\right)=E
$$

Bring the terms with y and z to the right side.

$$
-\frac{\hbar^{2}}{2 m} \frac{X^{\prime \prime}(x)}{X(x)}+\frac{1}{2} m \omega^{2} x^{2}=E+\frac{\hbar^{2}}{2 m}\left[\frac{Y^{\prime \prime}(y)}{Y(y)}+\frac{Z^{\prime \prime}(z)}{Z(z)}\right]-\frac{1}{2} m \omega^{2}\left(y^{2}+z^{2}\right)
$$

The only way a function of x can be equal to a function of y and z is if both are equal to another constant.

$$
-\frac{\hbar^{2}}{2 m} \frac{X^{\prime \prime}(x)}{X(x)}+\frac{1}{2} m \omega^{2} x^{2}=E+\frac{\hbar^{2}}{2 m}\left[\frac{Y^{\prime \prime}(y)}{Y(y)}+\frac{Z^{\prime \prime}(z)}{Z(z)}\right]-\frac{1}{2} m \omega^{2}\left(y^{2}+z^{2}\right)=F
$$

Bring the terms with y to one side.

$$
-\frac{\hbar^{2}}{2 m} \frac{Y^{\prime \prime}(y)}{Y(y)}+\frac{1}{2} m \omega^{2} y^{2}=E-F+\frac{\hbar^{2}}{2 m} \frac{Z^{\prime \prime}(z)}{Z(z)}-\frac{1}{2} m \omega^{2} z^{2}
$$

The only way a function of y can be equal to a function of z is if both are equal to another constant.

$$
-\frac{\hbar^{2}}{2 m} \frac{Y^{\prime \prime}(y)}{Y(y)}+\frac{1}{2} m \omega^{2} y^{2}=E-F+\frac{\hbar^{2}}{2 m} \frac{Z^{\prime \prime}(z)}{Z(z)}-\frac{1}{2} m \omega^{2} z^{2}=G
$$

As a result of using the method of separation of variables, Schrödinger's equation has reduced to four ODEs - one in x, one in y, one in z, and one in t.

$$
\left.\begin{array}{r}
i \hbar \frac{T^{\prime}(t)}{T(t)}=E \\
-\frac{\hbar^{2}}{2 m} \frac{X^{\prime \prime}(x)}{X(x)}+\frac{1}{2} m \omega^{2} x^{2}=F \\
-\frac{\hbar^{2}}{2 m} \frac{Y^{\prime \prime}(y)}{Y(y)}+\frac{1}{2} m \omega^{2} y^{2}=G \\
E-F+\frac{\hbar^{2}}{2 m} \frac{Z^{\prime \prime}(z)}{Z(z)}-\frac{1}{2} m \omega^{2} z^{2}=G
\end{array}\right\}
$$

The strategy is to solve the second and third eigenvalue problems for F and G, then to solve the fourth eigenvalue problem for E, and then finally to solve the first eigenvalue problem for $T(t)$.

Since $-\infty<x, y, z<\infty$, the method of operator factorization can be used to solve the latter three (as was done in Problem 2.10).

$$
\begin{array}{rlrl}
F & =\left(j+\frac{1}{2}\right) \hbar \omega, & & j=0,1,2, \ldots \\
G & =\left(k+\frac{1}{2}\right) \hbar \omega, & & k=0,1,2, \ldots \\
E-F-G & =\left(l+\frac{1}{2}\right) \hbar \omega, & l=0,1,2, \ldots
\end{array}
$$

Substitute the formulas for F and G into the third equation.

$$
E-\left(j+\frac{1}{2}\right) \hbar \omega-\left(k+\frac{1}{2}\right) \hbar \omega=\left(l+\frac{1}{2}\right) \hbar \omega
$$

Solve for E.

$$
E_{j k l}=\left(j+k+l+\frac{3}{2}\right) \hbar \omega, \quad\left\{\begin{array}{l}
j=0,1,2, \ldots \\
k=0,1,2, \ldots \\
l=0,1,2, \ldots
\end{array}\right.
$$

Evaluate the energy for many values of j, k, and l.

$$
\begin{aligned}
& E_{000}=\left(0+0+0+\frac{3}{2}\right) \hbar \omega=\left(\frac{3}{2}\right) \hbar \omega=E_{0} \\
& E_{100}=\left(1+0+0+\frac{3}{2}\right) \hbar \omega=\left(\frac{5}{2}\right) \hbar \omega=E_{1} \\
& E_{010}=\left(0+1+0+\frac{3}{2}\right) \hbar \omega=\left(\frac{5}{2}\right) \hbar \omega \\
& E_{001}=\left(0+0+1+\frac{3}{2}\right) \hbar \omega=\left(\frac{5}{2}\right) \hbar \omega \\
& E_{110}=\left(1+1+0+\frac{3}{2}\right) \hbar \omega=\left(\frac{7}{2}\right) \hbar \omega=E_{2} \\
& E_{101}=\left(1+0+1+\frac{3}{2}\right) \hbar \omega=\left(\frac{7}{2}\right) \hbar \omega \\
& E_{011}=\left(0+1+1+\frac{3}{2}\right) \hbar \omega=\left(\frac{7}{2}\right) \hbar \omega \\
& E_{200}=\left(2+0+0+\frac{3}{2}\right) \hbar \omega=\left(\frac{7}{2}\right) \hbar \omega \\
& E_{020}=\left(0+2+0+\frac{3}{2}\right) \hbar \omega=\left(\frac{7}{2}\right) \hbar \omega \\
& E_{002}=\left(0+0+2+\frac{3}{2}\right) \hbar \omega=\left(\frac{7}{2}\right) \hbar \omega
\end{aligned}
$$

Evaluate the energy for more values of j, k, and l.

$$
\begin{aligned}
& E_{111}=\left(1+1+1+\frac{3}{2}\right) \hbar \omega=\left(\frac{9}{2}\right) \hbar \omega=E_{3} \\
& E_{210}=\left(2+1+0+\frac{3}{2}\right) \hbar \omega=\left(\frac{9}{2}\right) \hbar \omega \\
& E_{201}=\left(2+0+1+\frac{3}{2}\right) \hbar \omega=\left(\frac{9}{2}\right) \hbar \omega \\
& E_{120}=\left(1+2+0+\frac{3}{2}\right) \hbar \omega=\left(\frac{9}{2}\right) \hbar \omega \\
& E_{021}=\left(0+2+1+\frac{3}{2}\right) \hbar \omega=\left(\frac{9}{2}\right) \hbar \omega \\
& E_{012}=\left(0+1+2+\frac{3}{2}\right) \hbar \omega=\left(\frac{9}{2}\right) \hbar \omega \\
& E_{102}=\left(1+0+2+\frac{3}{2}\right) \hbar \omega=\left(\frac{9}{2}\right) \hbar \omega \\
& E_{300}=\left(3+0+0+\frac{3}{2}\right) \hbar \omega=\left(\frac{9}{2}\right) \hbar \omega \\
& E_{030}=\left(0+3+0+\frac{3}{2}\right) \hbar \omega=\left(\frac{9}{2}\right) \hbar \omega \\
& E_{003}=\left(0+0+3+\frac{3}{2}\right) \hbar \omega=\left(\frac{9}{2}\right) \hbar \omega
\end{aligned}
$$

Therefore, following the pattern,

$$
E_{n}=\left(n+\frac{3}{2}\right) \hbar \omega, \quad n=0,1,2, \ldots \ldots
$$

The degeneracy is the number of states that have the same energy. As a result, $d_{0}=1, d_{1}=3$, $d_{2}=6$, and $d_{3}=10$. Notice that to get $d_{1}, 2$ needs to be added to d_{0}; to get $d_{2}, 3$ needs to be added to d_{1}; and to get $d_{3}, 4$ needs to be added to d_{2}. The pattern is apparent for d_{n+1}.

$$
d_{n+1}=(n+2)+d_{n}, \quad d_{0}=1
$$

This is a recurrence relation, more specifically an inhomogeneous first-order linear difference equation with constant coefficients. Bring d_{n} to the left side.

$$
d_{n+1}-d_{n}=n+2
$$

The left side is how the discrete derivative of a function d_{n} of the integers is defined.

$$
D d_{n}=n+2
$$

Take the discrete antiderivative of both sides by summing from 0 to $n-1$.

$$
\begin{aligned}
\sum_{q=0}^{n-1} D d_{q} & =\sum_{q=0}^{n-1}(q+2) \\
D d_{0}+D d_{1}+D d_{2}+\cdots+D d_{n-2}+D d_{n-1} & =\sum_{q=0}^{n-1} q+\sum_{q=0}^{n-1} 2 \\
\left(d_{1}-d_{0}\right)+\left(d_{2}-d_{1}\right)+\cdots+\left(d_{n-1}-d_{n-2}\right)+\left(d_{n}-d_{n-1}\right) & =0+\sum_{q=1}^{n-1} q+2 \sum_{q=0}^{n-1} 1 \\
d_{n}-d_{0} & =\frac{(n-1)[(n-1)+1]}{2}+2[(n-1)+1] \\
d_{n}-1 & =\frac{(n-1) n}{2}+2 n \\
d_{n}-1 & =\frac{n^{2}+3 n}{2} \\
d_{n} & =\frac{n^{2}+3 n+2}{2}
\end{aligned}
$$

Therefore, the degeneracy of energy E_{n} is

$$
d_{n}=\frac{(n+2)(n+1)}{2}
$$

