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Problem 4.46

Consider the three-dimensional harmonic oscillator, for which the potential is
L 9 9
V(r) = 5w T, (4.215)

(a) Show that separation of variables in cartesian coordinates turns this into three
one-dimensional oscillators, and exploit your knowledge of the latter to determine the
allowed energies. Answer:

E, = <n + g) hew. (4.216)

(b) Determine the degeneracy d(n) of E,.

Solution
Schrodinger’s equation governs the time evolution of a wave function.

ov h?
h— = —— V20U + VT
‘ ot 2mv +

Here the aim is to solve it in all of space with the potential energy function,
L o9 9 2, 2
V(z,y,2) = 5w (% +y” +2%).

Since V = V(x,y, 2), expand the Laplacian operator in Cartesian coordinates.

59Y _ h? <82\I/ o A

5= "o a2 + 0y + 822)+V(x,y,z)\11(:c,y,z,t), —oco < T, Y,z <00, t>0

Because Schrodinger’s equation and its associated boundary conditions (U — 0 as |x| — oo) are
linear and homogeneous, the method of separation of variables can be applied: Assume a product
solution of the form ¥(z,y, z,t) = X (2)Y (y)Z(2)T'(t) and plug it into the PDE.

2 2
2 X (@Y () Z()T(0)] - —Q’jn{;’ﬂ[X@)Y(y)Z(z)T(tﬂ
82
- aTﬂ[X (@)Y (y)Z(2)T (1))
2
+§ZQ[X(x)Y(y)Z(2)T(t)]}
b gmet 4y 4 )X (@)Y () Z()T(0)
2
ihX ()Y (y)Z(2)T'(t) = — 2% (X" (@)Y (9)Z()T(t) + X (2)Y"(y) Z(2)T(t) + X ()Y (y) 2" ()T (1)]

+ —mw?(2? + y? + 22)[X (2)Y () Z(2)T(t)]
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Divide both sides by X ()Y (y)Z(2)T(t) in order to separate variables.

1
+ §mw2(x2 + 9% + 2%)

T T “2m +

X(z) Yy  Z(2)

L T'(t) n? {X”(x) Y"(y) Z”(Z)]

The only way a function of ¢t can be equal to a function of z, y, and z is if both are equal to a
constant.

Tt)  2m

1
+ -mw? (2 +y*+22)=F

PO R A
X T Yl 2

Bring the terms with y and z to the right side.

P X") 1 i EEOREAC] PR

+ —mw?r? = E+4 — + 5

2m X(z) 2 om | Y(y) = Z(2)

The only way a function of x can be equal to a function of y and z is if both are equal to another
constant.

W X"x) 1,5, w[Y"(y)  Z"(2) Lo 9,9 o
- = =F+— - = =F
2m X (x) * oMW + 2m | Y(y) * Z(z) 2" (" +27)
Bring the terms with y to one side.
BPY"y) |1 4, W Z'z) 1 55,
- - - F_F1 _Z
2m Y (y) Tomey * 2m Z(z) o E

The only way a function of y can be equal to a function of z is if both are equal to another

constant. ) //( ) ) ”( )
he Y (y 1 5 he Z"(z 1 55
- — =F—-F+— - = =G
2m Y (y) + MY + 2m Z(z) M=
As a result of using the method of separation of variables, Schrodinger’s equation has reduced to
four ODEs—one in z, one in y, one in z, and one in ¢.

n? X'(x) 1 2.2
_ _ =F
2m X (z) + M

n? Y”(@/) 1 2 2
—% Y(y) +§mw Yy =G

h? Z”(Z) 1 2.2
EF—-—F+ — - — =
+ om Z(2) 5 MW"z G

The strategy is to solve the second and third eigenvalue problems for F' and G, then to solve the
fourth eigenvalue problem for E, and then finally to solve the first eigenvalue problem for T'(¢).
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Since —oo < z,y, 2 < 00, the method of operator factorization can be used to solve the latter
three (as was done in Problem 2.10).

1
F:(j+2>hw, j=0,1,2,...

1
G:<k+2>hw, k=0,1,2,...

1
E—F—G:<l+2>hw, 1=0,1,2,...

Substitute the formulas for F' and G into the third equation.
E |+ L hw k+ L hw = (1+ L hw
Iy 2) ™=\ T2

i=0,1,2,...

Ejkl—<j+k+l—|—;>ﬁw, k=0,1,2,...

Solve for E.

Evaluate the energy for many values of j, k, and .

E000—<0+0+0+2>MZ<Z)M:E0
3 5
Eip0 = 1+0+0+§ hw = 3 hw = F4
3 5
E010:<0+1+0+2>7w:<2>hw
3 5
E001:<0+0+1+2>7m:<2)hw
3 7
E110:<1+1+0+2>M:<2>M:E2
3 7
Ep1 = 1+0+1—|—§ hw = 3 hw
3 7
FEoi1 = 0+1+1+§ hw = 5 hw
3 7
E200=<2+0+0+2>hw:<2>hw
3 7
Eoop = 0+2+0+§ hw = B hw
3 7
FEoge = 0+0+2+§ hw = B hw
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Evaluate the energy for more values of j, k, and [.

E111:<1+1+1+2>M:<2>M:E3
3 9
FEog = 2+1+0+§ hw = 3 hw
3 9
E201=<2+0+1+2>7M=<2>hw
3 9
E120:<1+2+0—|—2>ﬁw:<2>hw
3 9
Epo1 = 0+2+1+5 hw = 2 hw
3 9
3 9
E102:<1+0+2—|—2>7w:<2>hw
3 9
Es3p0 = 3—1—0—5—0—1—5 hw = 3 hw
3 9
E030:<0+3+0+2>7§w:<2>hw
3 9
E003:<0+0+3+2>M:<2>hw

Therefore, following the pattern,

E, = (n+§>hw n=0,1,2,....

The degeneracy is the number of states that have the same energy. As a result, dg = 1, di = 3,
ds = 6, and d3 = 10. Notice that to get di, 2 needs to be added to dy; to get ds, 3 needs to be
added to dy; and to get ds, 4 needs to be added to do. The pattern is apparent for dy ;.

dpy1=M+2)+d,, do=1

This is a recurrence relation, more specifically an inhomogeneous first-order linear difference
equation with constant coefficients. Bring d,, to the left side.

dn+l — dn =n-+ 2
The left side is how the discrete derivative of a function d,, of the integers is defined.

Dd, =n+2
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Take the discrete antiderivative of both sides by summing from 0 to n — 1.

n—1 n—1
> Ddy=) (a+2)
q=0 q=0
n—1 n—1
Ddo + Ddy + Ddy + -+ Ddp_o + Ddp_y = > g+ 2
q=0 q=0

n—1 n—1
(di —do) + (da = i)+ + (dn1 = dn2) + (dn — dn 1) =0+ D> _g+2) 1
qg=1 q=0

(n—1)[(n—1)+1]

dy — do = 5 +2[(n—1)+1]
g —1= = o,
2
n?+3n
dy,—1=
2
0 n2+?2>n+2

Therefore, the degeneracy of energy FE,, is

i, = (n+2)(n+1).

www.stemjock.com



